Linac Front-End R&D --Systems Integration and Meson Lab Setup

Bob Webber

Fermilab Accelerator Advisory Committee May 10th – 12th, 2006

Talk Outline

- Motivation and context of schedule
- R&D plan
- R&D objectives
- Manpower resources and needs
- R&D facilities
- Schedule
- Conclusion

Motivation and Timeline

- Motivation Demonstrate key and un-tested technologies important to the low-energy front-end (β<0.4) section of the proposed 8 GeV H- Linac
- Timeline Accomplish the R&D necessary to establish technical credibility and cost basis for the Linac front-end by ~2010

R&D Plan

- Install and commission 2.5 MW, 325 MHz klystron system
- Equip and operate a 325 MHz high power RF component test facility
- Fabricate, install, and operate a test cryostat for 325 MHz SC spoke cavities
- Construct and test key components of the low-energy Linac concept
- Assemble the 10 MeV RT Linac, operate with beam, and verify performance
- Install 325 MHz SC spoke resonator cryomodules and operate with beam up to 90 MeV

This all adds up to building a one-of-a-kind superconducting 90 MeV H- linac

R&D Objectives

- Demonstrate high power RF distribution and 4.5 millisecond pulse operation of multiple cavities from a single klystron
- Demonstrate device and system performance of high power vector (IQM) modulators for amplitude and phase control of multiple cavities
- Measure axially-symmetric beam performance with RT-CH (room temperature, crossbar H-type) spoke resonator cavities and SC solenoid focusing in the RT Linac
- Demonstrate low transition energy to superconducting accelerating structures (10 MeV)
- Demonstrate application of superconducting spoke resonator RF structures in low beta Linac
- Demonstrate high-speed (nanosecond) beam chopping at 2.5 MeV
- Demonstrate performance of this Linac concept and resulting beam quality to 90 MeV

Major Activity Areas in Meson

- 325 MHz Klystron and Modulator Area
- 325 MHz RF Component Test Facility
- Cavity Test Cave (RT-CH and superconducting cavities)
- Ion Source, RFQ, and 2.5 MeV Absorber Area
- 90 MeV Accelerator and Beam Absorber Cave

Meson Building Floor Plan

325 MHz Klystron and Modulator Area

Equipment

- Modulator
- Klystron
- Waveguide, circulator, power divider, waveguide switch and RF load
- Low level electronics

Activities

Commission and operate klystron power system

View Into Klystron/Modulator Area

325 MHz 2.5MW Klystron

Klystron X-Ray Shield

4.5 msec Klystron Pulse Transformer

325 MHz Waveguide Circulator

325 MHz RF Component Test Facility

Equipment

- Waveguide with shuttered component test interface
- DC/pulsed medium power supplies
- Low level and diagnostics electronics

Activities

 Installation and testing of various 325 MHz RF components over a wide range of RF power levels

Waveguide Components

325 MHz Cavity Test Cave

Equipment

- Facilities for power testing of room temperature and superconducting RF cavities
- Cavity test cryostat
- Vacuum equipment
- Low level and diagnostics electronics

Activities

Install and test various 325 MHz RF cavities (RT-CH and superconducting) up to full power (~100KW maximum pulsed)

Ion Source, RFQ and 2.5 MeV Beam Area

Equipment

- Ion source and associated high voltage power supply equipment
- DC/pulsed medium power supplies
- 325 MHz RFQ
- Beam absorber
- Low level and diagnostics electronics

Activities

Commission and operate 2.5 MeV beam at maximum
 500 watts intermittent beam power

Linac and Absorber Enclosure

Equipment

- Accelerating cavities, RF power distribution, other beam line components, and all utilities and support equipment required to accelerate protons or H- ions to 90 MeV
- Beam absorber

Activities

Commission and operate 90 MeV beam at maximum
 10KW intermittent beam power

View Down (Future) Linac Beam Line

Layout Through Second β =.4 Cryostat

Meson Linac Cave Cross-section

Meson Schedule 2006

- Short "mock" Linac cave section available
 - May 2006
- Klystron modulator completion
 - July 2006
- 325 MHz RF power system commissioning
 - July 2006
- 325 MHz component testing in RF test area
 - Starting August 2006
- 325 MHz RT cavity power testing in cavity test cave
 - September 2006
- Superconducting cavity test cryostat installation
 - October 2006
- Ion Source installation in Meson
 - November 2006

Meson Schedule 2007

- RFQ (now in procurement) delivery and power testing
 - January 2007
- RT cavity and coupler testing
 - Starting February 2007
- 2.5 MeV beam tests
 - Beginning February 2007
- First SC spoke resonator power tests in test cryostat
 - April 2007
- Linac cave construction and utilities installation
 - May 2007
- Demonstration of multiple cavity RF distribution and independent amplitude & phase control
 - July 2007
- Beam accelerated through first 'N' RT cavities
 - September 2007

Meson Schedule 2008

- Full 10 MeV RT linac installed
 - April 2008
- R&D beam operations at 10 MeV
 - Starting May 2008
- First SC spoke resonator cryomodule installation
 - October 2008
- Tests of RT + SC cavity RF distribution and independent amplitude & phase control
 - November 2008
- Beam through first SC spoke cryomodule
 - December 2008

Manpower Resources

A Lab-Wide effort is required and now being applied

- Beam line components are designed and procured by Technical Division
- RF and conventional power source components and systems integration and operation are the responsibility of the Accelerator Division
- Particle Physics Division is supplying manpower for utilities and infrastructure installation in the Meson building
- Laboratory Safety Section and Accelerator Division Safety
 Department are already at this early stage actively involved

Key technical systems now lacking required attention

- RF power distribution system (tightly coupled with cavity design status and power requirements)
- Low level RF systems system design, modeling, hardware (partially mitigated via LBNL MoU)
- Cryogenics delivery system engineering for the Meson Linac cave
- Beam instrumentation design (partially mitigated by BNL MoU)

Summary

- Considerable activity is now underway on component design, procurement, and facilities to support planned R&D
- It will be an exciting next 12 months to bring 325 MHz klystron and RFQ on-line and to accelerate beam in the Meson Building
- Key areas, presently lacking effort necessary to maintaining desired schedule, have been identified

Back-up Slides

Meson Building Floor Plan

